
Automatic Build Pipeline
Sven van Huessen

232380

Contents
State of the Art .. 3

Typical Setups ... 3

Common Challenges ... 3

Shortcuts ... 3

Why? ... 4

What? .. 4

How? ... 5

Server set-up ... 5

Discord bot .. 5

Perforce syncing .. 6

Building the game ... 6

Zip it and ship it ... 6

Proof of Concept ... 7

Syncing the files .. 7

Compiling/cooking the game. ... 8

Zip it .. 8

Ship it .. 9

Combine it ... 9

Adopt into the Project .. 10

Feedback ... 11

Automatic builds ... 11

Naming convention checker ... 11

Future Improvements ... 12

Naming conventions ... 12

Speed .. 12

Reflection .. 13

Relevance .. 13

Python ... 13

Discord .. 13

Server .. 13

Sources .. 14

State of the Art
To understand the state of the art for automatic build pipelines, particularly in the context of game

development using engines like Unreal, it's useful to consider several aspects. typical setups,

common challenges, prevalent shortcuts, and best practices.

Typical Setups

• Tools and platforms:

Commonly used automation tools include:

a. Jenkins (https://www.jenkins.io/)

b. Travis CI (https://www.travis-ci.com/)

c. CircleCI (https://circleci.com/)

d. GitLab CI (https://docs.gitlab.com/ee/ci/)

Most used tools for version control are

e. Perforce (https://www.perforce.com/)

f. Git (https://git-scm.com/)

• Pipeline Stages: A typical pipeline involves stages for pulling the latest code, compiling code,

running tests (unit, integration, etc.), packaging builds, deploying to test environments, and

then pushing to production if all checks pass.

Common Challenges

• Complex Dependency Management: Game projects often have complex dependencies that

need to be correctly configured in the build system to ensure consistent builds.

• Large Build Sizes: Games typically have large assets which can slow down the build process

significantly.

• Branch Management: Handling multiple development branches simultaneously can

complicate the build process, requiring careful management of which branches are being

built and when.

Shortcuts

• Partial Builds: Instead of building the entire project, developers might set up the pipeline to

build only parts of the project that changed. This is risky if dependencies are not correctly

managed.

• Skipping Tests: Sometimes, to speed up the build process, developers might skip running

tests or run only a subset of tests. This increases the risk of bugs going undetected into

production.

• Hardcoding Values: To simplify configuration, developers might hardcode paths, credentials,

or settings into build scripts, which can lead to security and maintainability issues.

https://www.jenkins.io/
https://www.travis-ci.com/
https://circleci.com/
https://docs.gitlab.com/ee/ci/
https://www.perforce.com/
https://git-scm.com/

Why?
Why did I choose this research topic?

My fascination with creating tools and programs to help game development began during previous

projects. For instance, in the first year's Block B, I developed an endless runner game that required

players to dodge obstacles. Given the variety of obstacle models available to me, I decided to

enhance the game's complexity by combining different obstacles to create more challenging

gameplay.

To integrate these combined obstacles into the game, I needed a method to position them at will

and then incorporate the configurations directly into the game. Initially, I considered using Blender

to merge the obstacles and save them as a new object. However, this approach was resource-

intensive, requiring significant computer memory to save and load multiple models.

My solution involved using a 3D software to arrange the obstacles and then creating a script to

interpret the software's save file. Instead of generating new 3D models, my script produced a JSON

file detailing the position, rotation, and scale of each model within the scene. This method allowed

the game to load individual obstacle models and position them according to the JSON file's

specifications, thereby optimizing the use of resources.

This experience is one example of how external software can help the development process.

Leveraging my degree in Software Development, I believe I can significantly simplify the building

process for my team, making it as efficient as possible.

What?
As mentioned in the previous paragraphs, there are already numerous options available for

continuous integration, and some of these options are compatible with Unreal Engine. However,

these solutions do not support integration with Discord.

Considering the widespread use of Discord, I will develop a continuous integration system that

allows team members to easily create new builds and publish them on Itch.io through Discord by

using simple commands (see Discord bot). And instead of communicating through email, team

members will receive notifications directly on the Discord server.

This integration facilitates quick testing and sharing for the team, eliminating the need to distribute

zip files. Additionally, it will assist developers by enforcing consistent naming conventions and coding

guidelines, resulting in a cleaner and more organized project for everyone.

Having the build processing being done on a different machine instead of your own will allow you to

start a build and work on something else that having to wait for the build to be done.

How?
In this section, I will outline the technical aspects of the pipeline stages and the expected user

interactions.

Server set-up

I will deploy a dedicated server to handle all operations, ensuring that as the developer, I only need

to configure the system once. This approach eliminates the need for each user to run the system

locally, which would complicate matters due to the challenges of installing necessary libraries on

various systems. Therefore, the server will operate continuously, capable of executing tasks at any

time.

Proxmox:

https://www.proxmox.com/en/

Windows Server 2019:

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019

Discord bot

The server will host a Discord bot that monitors and responds to commands issued within a Discord

server. The bot will trigger scripts to manage various tasks based on these commands. Below are

some key commands I plan on implementing:

• /ping - Checks if the server is online and the discord bot is running

• /build - This primary command performs several actions

o Retrieves the latest files from perforce

o Compiles the game

o Zip the game

o Upload to Itch

• /sync - Synchronizes the latest files from Perforce to the server and displays updates in

Discord.

• /check - Reviews file naming conventions and alerts the user of any issues via Discord.

Further research is needed to determine file contents.

• /maps – In the Common Challenges I explained how large build sizes can slow down the

process. For that reason I’m adding the option for the team to add which maps need to be

included for the build. This will reduce the size drastically.

• /link – link a discord username to a perforce username. This is so the program knows who to

ping when receives files from Perforce

https://www.proxmox.com/en/
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019

Perforce syncing

Like explained in the State of the art every CI needs to have a version control that handles all the

files. Because school uses Perforce and all of my team members know how to use it. I will this

software to handle the version control.

After doing research on perforce syncing, I found that perforce has their own Python library. This

library will allow me to easily get the latest files. It will also allow me to view who submitted what

files were submitted etc.

P4Python:

https://www.perforce.com/manuals/p4python/Content/P4Python/python.programming.html

Building the game

Once files are synced from Perforce, I will utilize the Unreal Automation Tool (UAT) via Python's

subprocess library. This setup initiates Unreal Engine in the background to compile the game into an

executable file.

Unreal Engine UAT:

https://unrealcontainers.com/docs/use-cases/continuous-integration

Subprocess Python:

https://docs.python.org/3/library/subprocess.html

Zip it and ship it

After compiling the game, I will use Python's Shutil library to package the build into a ZIP file.

Following this, the build will be uploaded to Itch.io using Butler, a command-line tool provided by

Itch.io for managing uploads.

Shutil:

https://docs.python.org/3/library/shutil.html

Butler:

https://itch.io/docs/butler/

https://www.perforce.com/manuals/p4python/Content/P4Python/python.programming.html
https://unrealcontainers.com/docs/use-cases/continuous-integration
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/shutil.html
https://itch.io/docs/butler/

Proof of Concept
To automate everything I first had to know if every step of the process is possible. So instead of

making everything at once, I made every step it’s own functionality. Below is my process working on

the proof of concept.

Syncing the files

Before you can compile the game into a playable .exe, we first have to get all the latest files so that

everyone’s work will be inside the game. like explained in How? I will use the P4Python library to

sync to perforce.

The code that fetches the latest files:

What happens when I type /sync in Discord:

This shows that one part of my proof of concept is working. The server now fetches the latest files

when I type /sync.

Compiling/cooking the game.

Now that I can fetch the latest files, I should compile the game into a playable .exe. By using the

Unreal Command line tool I can call an .exe, give it some parameters and it will run the compiler.

The code that calls the exe into compiling the game.

After a couple of minutes I have a playable exe:

Zip it

Now that I have a playable .exe, I should zip it so that it can be easily shared.

The code that zips the game:

Ship it

Now that I have a shareable zip, I can use Buttler to upload it automatically to Itch.io.

The code that calls the Buttler application and publish it on Itch.io

Now if you go to the Itch page, the build is there.

Combine it

Now that all the functionality is done, I combined it all into 1 single command. If I run /build, it will

do all the steps above automatically without me having to do anything else.

Adopt into the Project
Now that the POC is done, I should implement it into the real project and give my team members

the option to use my research project.

While working on the POC I saw that I was getting quite a lot of hardcoded values, like the perforce

settings, output location, etc. So during the POC I made a file that stores all the hardcoded

value/settings. By having this file I was able to easily port the project over to the teams project

settings, without having to change the code.

Example of a team member using the bot:

Feedback

After implementing the bot into the team Discord I got a lot of positive feedback. I also got some

feedback on things they would like to see changed. Below are some of the things I added after

receiving feedback on it.

Automatic builds

The teachers requested to have a build every Thursday at 12:00. So a team member suggested

automating this. I added a check to the bot for the when it’s 11:45 to automatically start a build and

let the team member know 15 minutes beforehand that a build is going to start and that they should

push their latest stuff.

Naming convention checker

If you call the /check command it will check all the files if the have the correct names. It will also ping

the people that submitted it so that the can change and update the name.

Future Improvements
Because of the short time span and me wanting to work on the game, I couldn’t add everything for a

fully functioning continues integration. I did implemented everything I stated in the How? Section. If

I had more time I would implement/improve the things listed below.

Naming conventions

Although I have a naming convention checker for file names, I couldn’t find a way to check for

variable names inside the blueprints. Having a variable check would’ve been handy for keeping the

project clean.

Speed

Right now de building times can differ a lot. Sometimes it takes 4 minutes and other time up to 40

minutes. This time difference is based on the stuff added to the project. Whenever a programmer

added or changed something using C++, it has to compile everything again, making it cost more time.

In the future I want to optimize this and research how other programs do this.

Reflection

Relevance
My choice to focus on the automatic building pipeline was insightful as it remained relevant

regardless of the game my team decided to work on. My prior experience in software development

and python allowed me to adapt and tailor the pipeline to fit different game specifications and

requirements. This adaptability proved invaluable as some of my peers were struggling to find a

reason to add their research to the game.

Python
Opting to use Python for this project was a strategic decision due to its extensive range of libraries

and tools, which helped various aspects of the build process. Python's capabilities allowed me to

automate numerous tedious tasks efficiently, thus speeding up the overall process and reducing the

potential for human error. The versatility and robustness of Python provided a solid foundation for

implementing complex automation tasks within my pipeline.

Discord
Integrating the build pipeline with Discord was a pivotal move. Eliminating the need for external

tools like Jenkins, which might have required additional setup and learning curve for team members.

This integration ensured that every team member could stay updated and use the pipeline right

from a familiar platform, enhancing usability and accessibility.

Server
Utilizing a dedicated server for the pipeline's operations significantly improved my workflow. It

handled builds and tasks without taxing local development machines, allowing team members to

continue working on other aspects of the game/project without performance drawbacks. This setup

also meant that builds could be executed at any time, enhancing our workflow's flexibility and

efficiency.

Sources
Jenkins

https://www.jenkins.io/

Travis CI:

https://www.travis-ci.com/

CircleCI:

https://circleci.com/

GitLab CI:

https://docs.gitlab.com/ee/ci/

Reddit:

https://www.reddit.com/r/gamedev/comments/5yv6t7/guide_to_continuous_integration_and_cont

inuous/

Proxmox:

https://www.proxmox.com/en/

Windows Server 2019:

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019

P4Python:

https://www.perforce.com/manuals/p4python/Content/P4Python/python.programming.html

Unreal Engine UAT:

https://unrealcontainers.com/docs/use-cases/continuous-integration

Subprocess Python:

https://docs.python.org/3/library/subprocess.html

Shutil:

https://docs.python.org/3/library/shutil.html

Butler:

https://itch.io/docs/butler/

https://www.jenkins.io/
https://www.travis-ci.com/
https://circleci.com/
https://docs.gitlab.com/ee/ci/
https://www.reddit.com/r/gamedev/comments/5yv6t7/guide_to_continuous_integration_and_continuous/
https://www.reddit.com/r/gamedev/comments/5yv6t7/guide_to_continuous_integration_and_continuous/
https://www.proxmox.com/en/
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2019
https://www.perforce.com/manuals/p4python/Content/P4Python/python.programming.html
https://unrealcontainers.com/docs/use-cases/continuous-integration
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/shutil.html
https://itch.io/docs/butler/

